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The papers /lo, 13/ are devoted to an investigation of soliton solutions for the model 
equation, and the paper /14/ is devoted to non-stationary solutions of solitary wave type. 

The authors are grateful to V.I. Arnol'd and A.A. Nepomnyashchiiforuseful fiscussions. 
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INFLUENCE OF NARROW CYLINDRICAL CAVITIES ON THE WAVE FIELD EXCITED BY A 
CONCENTRATED FORCE IN AN ELASTIC SPACE* 

T.V. SUVOROVA 

An elasticity theory problem is considered concerning the excitation of a 
wave field in a space weakened by a system of cylindircal cavities of small 
radius with rigid walls, with a concentrated force applied to a certain 
point of the space outside the shafts and varying sinusoidally. The 
solution of this problem is constructed by the principle of superposing 
the solutions of the following problems: the non-axisymmetric vibrations 
of an elastic space subjected to an oscillating concentrated force (problem 
1); the wave field that occurs in an elastic space perforated by a system 
of narrow cavities vibrating under the effect of a sinusoidally varying 
stress applied to their walls (problem 2). 

We also apply the method elucidated below to the investigation of the 
displacement field in an elastic space equipped with a system of elastic 
cylindrical inclusions of small diameter, or a system of cavities filled 
with liquid or a viscoelastic medium. 

1. We consider problem 1. We obtain formulas describing the wave field in a space ex- 
cited by a concentrated force Xe-'O!(X= (X,,X,,X,), o is the vibration frequency) applied to a 

*Prikl.Matem.Mekhan.,48,4,697-700,1984 
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point of space with cylindrical coordinates rO, 'pO, Q by the method of integral transforms, 

using the radiation principle /l/. The amplitude values of the displacement vector components 

II* = (U'. v',w') have the following form in cylindrical coordinates: 

Here p is the density of the elastic medium, X, p are the Lam& constants, &,, is the 

Kronecker delta, and K, (I) is the Macdonald function. The relationships (1.1) are written 

in dimensionless form, the displacements are referred to a linear unit, and the forces to the 

shear modulus P. The contour of integration o is selected in accordance with the radiation 

conditions /l/. It is on the real axis, deviates from it in the positive half-plane, bypasses 

the bifurcation points ---x1,-x,, of the integrand, and bypasses the bifurcation points x1,z2 

in the negative half-plane. 
The Fourier transforms of the displacement vector components on a 

of small radius o with central axis parallel to the I axis and passing 

are determined by the formulas 

m 
u* (r, cp, r) = 2 U*(r, p, r)e'P'Q 

v=--' 

u* (7' P, a) = 
T 

L’ (r, p, I) e-i= dr 

-30 

cylindrical surface S 

through the point (b,y,z,) 

(I.21 

(1.3) 

(1.4) 

(&+,,@ - a) K, (Ra,,,)], eie = - b&‘-~*) /R + bR 

W’(b,~p,a)l,,~~=O(gP), P>I 

CJ* (bt 0, a) 17, OE~ = 0 (ah f~* (b, k P, a) lr, wPES = 0 (ape’), P > 1 * 
Y* (b, 0, a),, BES = 0 @A i’* (bv f P, a) I,, 9ES = 0 (a’-‘), P > 1 

Formulas (1.4) are derived from (1.1) by using the addition theorem for modified Bessel 

functions and their asymptotic forms for small argument /2/. 

2. Problem 2 is described by the Lame equation in 

and the boundary conditions 
P (r.cp. 2) e 

-iot 

a cylindrical coordinate system /3/ 

i=l .?...., .V (2.1) 

where q,(a,p,z)= (qj,pj,r,) is the amplitude value of the stress vector on the side surface S,of 

of the j-th cavity, ~41 is the cavity radius, and N is the number of cavitiesinthe system. 

The cavity generators and the 1 axis are parallel. The position of the cavities in the system 

is determined by the distance between the centres of the f-th and j-th cavity bij and by the 

angle between the polar axis and the perpendicular connecting the centres of the cavities yfj. 

Since the vibrations regime is assumed steady, we shall in the sequel use just the 

amplitude values of the corresponding functions. 
Applying the Fourier integral transform to the Lame equations and satisfying the condi- 

tions (2.1), we arrive at formulas describing the displacement field u - (u, v,w) 

up. 9. ;)=p~~ei~~S~i~~(~,p,a,~~Ql(~.~.a)da+ 

(pj. m, a, a) Qj (0. m, a) da. 

(2.2) 



501 

(2.3) 

Qj (4, p. a) = 5 cicu yj (a, p, 2) da 
-m 

(2.4) 
F (r. p, 0~) = (Fij), 1, j = 1, 2, 3 
FII = aRp,lh. FtI =iip/rRpI, Ftl = -is&, 
FIJ = Q~~p+m~p~ FZJ = -imFlJ9 F*, = imo,R,,, m = (-l)f, j = 1, 2 

r’ (6 p? a) = (GiJ) tl=p7 f, i = 1, 2, 3 
Cl1 = 2PRp,/W - (A -I- p) x,*RpI/p; C, =_-2iaaRp,/dr 
GI1 - tip/r (bRp,ldr -R+); c&J = 2maaRw,,).Jar 

Glj = im Impap/rRpO - (as i- oe2) Rcpr,,,J 

&J = iao&cp+2,)n, i = 2, 3; R,, = K,, (onr), ” = 1, 2 

For small a and p> i the elements of the matrix C(a, p,a) have the following asymptotic 
behaviour 

aP+l 
Cr2(a,p,a)= 0 _ : ( ) p12p-’ 

i=1,2,3 (2.5) 

C, j (0, P. a) = 0 
ap ( ) p12p-' 

; j=l,3, i=1,2,3 

On the basis of (2.4) and (2.5), the terms of the infinite series in (2.2) decrease as 
ep/2p-=p!, hence, it is sufficient to consider just the first harmonics PLO, -J$ here the 

elements of the matrices K (r,O,a,.)= (Kilo), K (r,&i, a,o)= {A'F} have the simple form 

KnO = KnO = K1,O = K490 - K"** = I&" = Km0 = 0 (2.6) 
I&" = faa (o,R,, - o,RI,)lx~*. KS,’ = a (op*Ros - aaRD1)/3 

KF = -o 120,aRlI/tv i- o*‘R,, -I- (a8 + w& RJ/(4%& 

K;’ = --oi 1201Rll/r - o,*R,, -I- (a* i- 14’) R&4x,*) 

K,f’ = 0.25K,,‘; K$’ = K$= = K$ = 0 

KZ’ = FrKz; K$ = rlK$ Kg’ = ZF;K$’ 

3. On the basis of the solutions of problems 1 and 2, there is the wave field 

a0 (rl cp, 2) = u (r, V* 2) + ll* (r, cp, 2) (3.1) 
The origin is on the axis of symmetry of one of the cavities; we shall consider it as 

cavity No.1. 
The unknown functions Q,(e, p,u),t = i,2,.., N in (3.1) that determine the stresses on the 

cavity walls are found from the cavity wall stiffness conditions 

u" (r, 9, ~)I~,~es~ = 0, i = 1, 2, . , ., N (3,2) 

We will satisfy conditions (3.2) for each harmonic of the Fourier series of the displace- 
ments, we first pass from the local coordinate system PJ,$J With origin at the centre of the 
i--th cavity to the r,cp coordinate system in (2.2) by using the addition theorem for Macdonald 
functions /2/. Taking account of the smallness of the cavity radius a, the formulas and 
asymptotic estimates (1.4), and neglecting terms whose contribution is small compared with the 
rest, we arrive at a system of integral equations of the second kind to determine the unknown 
functions ?I (a, 0, z) and the combinations qj' = qJ (a, 1,~) - ipJ (a, 1, I); qJ* = qJ (a, -1, z) + Ipi ((I, ~1, 2); the 
system has the following form in Fourier transforms 

N 
In aTj(n, 0, a) - xl-* x (~1 (a, bj,,J T,,, (a, 0, a) + Gayr (a, bj,) X (3.3) 

rn-1 
m7=j 

IQ,' ~XP (--iYj,) - Q,’ erP (‘Vj,)l) = aelWL (b,j* 0, a) 1r.q~~~ 

(xl* + x2) a In oQ; + 5 (ia k> (-iyjm) yz (a, b,,J T,,, @,O, a) + 
rn=Gl 
mrj 

erP (2'Yjm) vs (a, bj,) Q,’ + Ya (a, bj,) Q,‘) 3 -U* P,p --ie a) 17, qzs, 
y1 (a, r) = a*Rol - osaRoI, us (a, 7) = olR11 - %RIS 
Y, (a, r) = oI*RRu - (a2 + x,9 Rot, Y, (a. 7) - o,~R~I - %‘R, 

The relationship between the quantities denoted by the upper and lower case letters q, p, 
T, is given by (2.3). 

System (3.3) can be solved by successive approximations. It is easy to see that its 



502 

order is reduced to 3. 
The mutual influence of the narrow cavities is traced only in the lower harmonics p = O.=I 

of the Fourier-series expansions; starting with p‘&2 it is negligible. The presence of 
adjacent cavities exerts no influence on the determination of the functions 

Qf (a, 0, a), Pj (~7 0, a), tj (~7 *I, a), Qj ((I, hv a), P >, 2 

These functions introduce a contribution of the order of a"and higher to the wave field. 

The functions r,(a, 0, a), Q,', Q,' depend on the mutual location of the cavities and the stresses 
on their walls. The wave-field component due to these functions is of the order of t!lna. 
Taking account of (2.5) and the above, we arrive at the conclusion that the wave field of the 
problem is determined by the functions r~(u,O,a), Qfl, Q,*. The displacement field of the initial 
problem is determined by (3.1)) (2.2), (1.1); it is sufficient to set p,m=O,*i in (2.2) 

In the case N= i, relationships (3.1) take the simplest form 

K";$';*;;a) [e"(l*(a, 1. a) + e-imu((a, -1, n)]}da +u'(r,:cp,z) 

It should be noted that near the side surface of the cavities the displacement field 
components caused by the influence of the adjacent cavities and the cavity itself are related 
as i:lno. 

A system of cavities of small radius a that perforates an elastic space causes a perturba- 
tion of the order of i/lna in the wave field of an elastic medium. This contribution depends 
on both the number of cavities inthe system and on their arrangement. 

The author is grateful to V.A. Babeshko for his interest and for valuable remarks. 
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THE POSSIBILITY OF IRREVERSIBLE QUASISTATIC PROCESSES 
IN A MACROSYSTEM* 

A.A. VAKULENKO 

For a fairly long time only such systems for which the running macrostate 
of the system is practically independent of the preceding history of 
change in the external parameters for quasistatic * (The definition of a 
quasistatic process used here corresponds to the standard definition (for 
instance, /l-S/), while the reversibility of the process is understood in 
the narrow sense /5/.) processes, have been considered in thermodynamics. 
The absence of a "memory" is characteristic for quasistatic processes in 
gases and ordinary liquids, as for reversible processes in any system. 

*Prikl.Matem.Mekhan.,48,4,700-704,1984 


